
DataMan® Communications
and Programming Guide

2020August13
Revision:6.1.9.1

Legal Notices
The software described in this document is furnished under license, and may be used or copied only in accordance with
the terms of such license and with the inclusion of the copyright notice shown on this page. Neither the software, this
document, nor any copies thereof may be provided to, or otherwise made available to, anyone other than the licensee.
Title to, and ownership of, this software remains with Cognex Corporation or its licensor. Cognex Corporation assumes
no responsibility for the use or reliability of its software on equipment that is not supplied by Cognex Corporation.
Cognex Corporation makes no warranties, either express or implied, regarding the described software, its
merchantability, non-infringement or its fitness for any particular purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cognex Corporation. Cognex Corporation is not responsible for any errors that may be present in either this document or
the associated software.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, nor
transferred to any other media or language without the written permission of Cognex Corporation.

Copyright © 2020. Cognex Corporation. All Rights Reserved.

Portions of the hardware and software provided by Cognex may be covered by one or more U.S. and foreign patents, as
well as pending U.S. and foreign patents listed on the Cognex web site at: cognex.com/patents.

The following are registered trademarks of Cognex Corporation:

Cognex, 2DMAX, Advantage, AlignPlus, Assemblyplus, Check it with Checker, Checker, Cognex Vision for Industry,
Cognex VSOC, CVL, DataMan, DisplayInspect, DVT, EasyBuilder, Hotbars, IDMax, In-Sight, Laser Killer, MVS-8000,
OmniView, PatFind, PatFlex, PatInspect, PatMax, PatQuick, SensorView, SmartView, SmartAdvisor, SmartLearn,
UltraLight, Vision Solutions, VisionPro, VisionView

The following are trademarks of Cognex Corporation:

The Cognex logo, 1DMax, 3D-Locate, 3DMax, BGAII, CheckPoint, Cognex VSoC, CVC-1000, FFD, iLearn, In-Sight
(design insignia with cross-hairs), In-Sight 2000, InspectEdge, Inspection Designer, MVS, NotchMax, OCRMax,
PatMax RedLine, ProofRead, SmartSync, ProfilePlus, SmartDisplay, SmartSystem, SMD4, VisiFlex, Xpand

Portions copyright © Microsoft Corporation. All rights reserved.

Portions copyright © MadCap Software, Inc. All rights reserved.

Other product and company trademarks identified herein are the trademarks of their respective owners.

2

Legal Notices

http://www.cognex.com/patents

Table of Contents
Legal Notices 2
Table of Contents 3
Symbols 4
About This Manual 5
Networking 6
Connecting Your DataMan to the Network 6
Connecting Your Fixed-Mount DataManReader to the Network 6
Connecting Your Handheld DataManReader to the Network 6
Connecting Your DataMan Intelligent Base Station to the Network 10
Direct Connection to Your Computer 11

Connecting Your Reader Across Subnets 16
Troubleshooting a Network Connection 17

DataMan Application Development 18
DMCC Overview 18
Command Syntax 18
DataMan SDK Development 20

Scripting 24
Script-Based Data Formatting 24
Error Management 28
Output 49
Code Completion and Snippets 51
Custom Communication Protocol API 53

3

Table of Contents

Symbols
The following symbols indicate safety precautions and supplemental information:

WARNING: This symbol indicates a hazard that could cause death, serious personal injury or electrical shock.

CAUTION: This symbol indicates a hazard that could result in property damage.

Note: This symbol indicates additional information about a subject.

Tip: This symbol indicates suggestions and shortcuts that might not otherwise be apparent.

4

Symbols

About This Manual
The DataMan Communications and Programming Guide provides information on how to integrate DataMan readers into
your particular environment, including:

l Network configuration

l DataMan Control Commands (DMCC) API

The DataMan reader connected to a network can be triggered to acquire images by several methods:

l using the DataMan Setup Tool

l trigger bits

l through a DMCC command

l manipulating objects through industrial protocols

For information on industrial protocols, see the DataMan Industrial Protocol Manual. All the other methods are explained
in detail in this document.

5

About This Manual

Networking
You can connect your DataMan device via a simple Ethernet connection. You can either set the IP address and subnet
mask of your DataMan device manually or let them be configured automatically using DHCP.

Connecting Your DataMan to the Network

Connecting Your Fixed-Mount DataMan Reader to the Network
Supply power to the reader using either a Power over Ethernet (PoE) injector (DataMan 260 series readers) or the
Power and I/O breakout cable (CCB-PWRIO-xx).

Cognex recommends the following connection sequence in case of using a PoE injector:

1. Connect the PoE injector to the Ethernet network (both ends of the patch cable).

2. Connect the power cord (AC 230V/110V) to the PoE injector.

3. Connect the reader to the PoE injector.

To disconnect the reader:

1. Disconnect the reader from the PoE injector.

2. Disconnect the power cord from the PoE injector.

3. Disconnect the PoE injector from the Ethernet network.

Connecting Your Handheld DataMan Reader to the Network
If you are using an Ethernet slide-in with your handheld DataMan reader, power your reader through Power over
Ethernet (PoE) and connect the Ethernet cable of the PoE to the network.

6

Networking

If you are using a serial slide-in with your handheld DataMan reader, connect the serial cable to your PC, power your
reader through an external power supply and connect your PC to the network.

Connecting Your DataMan to the Network Wirelessly
You can connect to your DataMan reader via the wireless network as well. For this, you need to use the Wi-Fi slide-in
with the device.

Ad-hoc Connection
The default factory settings for the wireless configuration of the device are:

l ad-hoc connection

l no encryption and no authentication

l SSID: the name of the device

This means that you can connect to your DataMan without the base station or a router.

To connect to your DataMan reader in ad-hoc mode, perform the following steps:

7

Networking

1. Make sure that the DataMan device is (re)set to factory settings.

2. Search for the DataMan device among the available wi-fi connections and connect to it.

3. Open the DataMan Setup Tool.

4. Search for the device and connect to it.

5. Once you are connected to your DataMan device in the DataMan Setup Tool, you can configure the wireless
connection.

a. Authentication: only Open Mode can be selected.

b. Encryption method: WEP-40 and WEP-104. You can enter a passphrase for these methods.

Infrastructure Mode
You can set Wireless Infrastructure mode in the DataMan Setup Tool as well.

1. Connect to your device in the DataMan Setup Tool.

2. In theWiFi tab of Communication Settings, select Infrastructure mode from the Network Type combo box. A
warning appears if the SSID name is identical to the device name, as this results in the misconfiguration of the
device.

8

Networking

3. Select from the following authentication modes:

Authentication mode Encryption mode Requirements

Open System WEP-40, WEP-104 passphrase

WPA-PSK, WPA2-PSK TKIP, AES, TKIP/AES passphrase

EAP-TLS (see the section below) TKIP, AES, TKIP/AES l Client’s certificate

l CA’s certificate

l Client’s private key

l Client’s username

PEAP-MSCHAPV2 (see the section
below)

TKIP, AES, TKIP/AES l CA’s certificate

l Client’s username

l Client’s password

EAP-TLS Authentication Mode
Encryption methods: TKIP, AES, TKIP/AES are supported. All of these methods require specifying several PEM files,
which are created by the user’s local system administrator and contain certificate information.

These certificates are used to encrypt the communication between the Wi-Fi Access Point and the reader.

The following certificates are required:

l Client’s certificate. This must be different for each reader. It may be publicly accessible (for example, on a
company webpage).

l CA’s certificate (CA = Certificate Authority). One such file is created for each authentication server within the
company. It can be publicly accessible.

l Client’s private key. This must be different for each reader. It must not be publicly accessible, and must be stored
and handled confidentially.

Uploading a Certificate File to DataMan
You can upload these files in the DataMan Setup Tool one by one: click the folder button beside the fields and select the
appropriate file to upload it to the device.

A short message shows if a certificate is specified. The text “<not set>” appears in the field if there is no key or certificate
specified.

9

Networking

Removing a Certificate File from DataMan
Click the red X button beside the corresponding field to delete an existing certificate from your device. The certificates
are saved into device backups, and may be completely restored.

PEAP-MSCHAPV2 Authentication Mode
Encryption methods: TKIP, AES, TKIP/AES are supported. All these methods require a PEM file containing the CA’s
certificate, the client’s user name, and a password.

Certificate Files
In the DataMan Setup Tool, the following restrictions apply to the PEM files:

l Their format must be the industry-standard PEM format (generated by OpenSSL toolkit).

l The PEM dialect may be either PKCS8 or SSLeay.

l Only an unencrypted private key and certificate files are allowed.

l The Client’s private key and certificate must contain exactly one section; the CA’s certificate can contain one or
more certificates.

l Make sure that you know the user name stored within your own certificate file, and use the same name in the
Client’s user name text box. This is necessary because the Setup Tool does not look into the certificate files to
extract this user name information.
When you leave the Wireless tab, a reboot confirmation window pops up and the settings are saved to the device.

Connecting Your DataMan Intelligent Base Station to the Network
1. If you use DMA-IBASE-00, power up your base station using one of these two options:

l If you want to connect the Ethernet cable directly to the network or your PC, power up the base station
using a 24V power supply.

10

Networking

l If you want to use a Power over Ethernet (POE) adapter, that will power up your base station. If you use
the DMA-IBASE-BT-01 base station, use direct connection with a 24V power supply. DMA-IBASE-BT-01
offers a 3-pin terminal block:

Pin # Signal

1 +24V

2 Shield

3 GND

Note: Never connect the terminal block and barrel connector power supply at the same time.

2. Connect your base station to your PC with an Ethernet cable.

3. The base station becomes visible as connected through Ethernet, and it routes data through the wireless (Wi-Fi
or Bluetooth) interface to the reader.

Direct Connection to Your Computer
When connecting a DataMan device directly to an Ethernet port on a PC, both the PC and the DataMan device must be
configured for the same subnet. This can be done automatically though Link Local Addressing or you can manually

11

Networking

configure your reader and your PC.

Link Local Addressing automatically requests and assigns an IP address. In the DataMan Setup Tool, this corresponds
to the DHCP Server communication option. This is the default, you do not have to make any changes.

You can also manually configure your DataMan device to reside on the same subnet as the PC. This option is detailed in
the following section.

Configuring the DataMan to Reside on the Same Subnet as the PC
In the DataMan Setup Tool's Communications application step's Ethernet tab, click the Copy PC Network Settings
button. Choose the network you want to use and the settings will be copied in the Use Static IP Address window.

Note: Remember to update the IP address of your DataMan device. The IP address that is copied belongs to your
PC.

A triangle with an exclamation mark in the upper right-hand corner reminds you that you have to reboot the device in
order for the changes to take effect.

To force the network settings on your DataMan, select Use Static IP Address and enter an IP Address and Subnet Mask
that will be on the same subnet as the PC. Make sure this IP address is not yet in use (for example, test by pinging it). For
example:

l IP Address: 169.254.135.200

l Subnet Mask: 255.255.0.0

Note: The default Subnet Mask is 255.255.255.0. You can set it back to default by scanning the Reset Scanner to
Factory Defaults Configuration Code.

12

Networking

Your DataMan device is now configured to the specified network settings, and it reboots automatically. After the address
has been resolved, your DataMan device appears under the Network node. This can take up to 60 seconds. If the
device does not appear after 1 or 2 minutes, press the Refresh button in the DataMan Setup Tool’s Connect page. This
will force the DataMan Setup Tool to scan for DataMan devices connected to the PC or connected to the same network.

Configuring the PC to Reside on the Same Subnet as the DataMan
If it is preferred that the DataMan network settings remain unchanged, you must already know the IP Address and Subnet
Mask of the DataMan or you must connect to the DataMan via RS-232 to find them out. The DataMan IP Address and
Subnet Mask can be found under Communication Settings.

13

Networking

Once the IP Address and Subnet Mask of the DataMan device are known, the PC’s network settings can be changed.

Perform the following steps to configure your PC (examples here are of Windows XP):

1. In the Start Menu, start typing Control Panel and open it.

2. Click Network and Internet.

3. Click Network and Sharing Center and under active networks, click Ethernet.

14

Networking

4. In the Ethernet Status window that pops up, click Properties.

5. In the Ethernet Properties window that pops up, select Internet Protocol Version 4 (TCP/IPv4) and click
Properties.

6. Under the General tab, select the Use the following IP address option and enter an IP address and Subnet mask
that are on the same subnet as your DataMan. Click OK.

15

Networking

7. Click Close. The network settings of your PC will change to the new specified values.

8. Reboot the DataMan device. It appears under the Discovered Devices node on the Connect page after the
network address has been resolved.

9. If the device does not appear after 1 or 2 minutes, click the Refresh button on the DataMan Setup Tool’s Connect
page. The DataMan Setup Tool scans for DataMan devices connected to the PC or connected to the same
network.

Connecting Your Reader Across Subnets
The following options can be used to connect to the DataMan device with the DataMan Setup Tool across subnets if you
already know the IP Address of the device.

1. In the DataMan Setup Tool’s Reader Maintenance page, click Add Network Device.

2. Enter the IP Address of the target DataMan device.

16

Networking

3. Click OK. The reader appears under the Network node. Double click the new node or select it and click the
Connect button. If the device is available, the reader will be connected.

Troubleshooting a Network Connection
Based on your network configuration, the DataMan Setup Tool may not be able to communicate with the reader and it
will not appear in the list of Network devices. If you know the IP address of the reader, use the Add Network Device
option in the DataMan Setup Tool. This method allows your DataMan reader to appear in the list of Network devices so
that you can connect to it through the DataMan Setup Tool and your USB connection.

17

Networking

DataMan Application Development
DataMan Control Commands (DMCC) are a method of configuring and controlling a DataMan reader from a COM port or
through an Ethernet connection, either directly or programmatically through a custom application.

Note: For a complete list of DMCC commands, click the Windows Start menu and browse to Cognex -> DataMan
Setup Tool v x.x -> Documentation -> Command Reference. Alternatively, you can open the Command Reference
through the Setup Tool Help menu.

DMCC Overview
DataMan Control Commands (DMCC) are a method of configuring and controlling a DataMan reader from a COM port,
either directly or programatically through a custom application. Depending on the DataMan reader you are using, the
COM port connection can be either RS232, USB, or the Telnet protocol in the case of Ethernet capable readers. By
default, Ethernet capable readers are configured to communicate over TCP port number 23, but you can use the
DataMan Setup Tool to assign a different port number as necessary.

Note: Use a third party client such as PuTTY to make changes to the Telnet client provided by Windows to
communicate with the DataMan.

Command Syntax
All DMCC commands are formed of a stream of ASCII printable characters with the following syntax:

command-header command [arguments] footer

For example:

||>trigger on\CR\LF

Command Header Syntax
||checksum:command-id>

All options are colon separated ASCII text. A header without the header-option block will use header defaults.

checksum

0: no checksum (default)

1: last byte before footer is XOR of bytes

command-id

An integer command sequence that can be reported back in acknowledgement.

Header Examples
Example Description
||> Default Header
||0:123> Header indicating no-checksum and ID of 123
||1> Header indicating checksum after command and data.

Command
The command is an ASCII typable string possibly followed by data. All command names and public parameters data are
case insensitive. Only a single command can be issued within a header-footer block. Commands, parameters and
arguments are separated by a space character.

18

DataMan Application Development

Commands
Short names specifying an action. A commonly used command is GET or SET followed by a Parameter and Value.

Parameters
Short names specifying a device setting. Parameter names are organized with a group of similar commands with one
level of structural organization separated by a period ('.').

Arguments
Boolean: ON or OFF

Integer: 123456

String: ASCII text string enclosed by quotes (“).The string content is passed to a function to translate the string to the final
format. The following characters must be backslash escaped: quote (\”), backslash (\\), pipe (\|), tab (\t), CR(\r), LF (\n).

Footer
The footer is a carriage return and linefeed (noted as \CR\LF or \r\n).

Reader Response
The reader will have one of several response formats. The choice of response format is configured using the SET
COM.DMCC-RESPONSE command.

Silent: (0, Default) No response will be sent from the reader. Invalid commands are ignored without feedback. Command
responses are sent in space delimited ASCII text without a header or footer.

Extended: (1) The reader responds with a header data footer block similar to the command format.

Note: While the reader can process a stream of DMCC commands, it is typically more robust to either wait for a
response, or insert a delay between consecutive commands.

||checksum:command-id[status]

checksum

The response uses the same checksum format as the command sent to the reader.

0: no checksum

1: last byte before footer is XOR of bytes

command-id

The command-id sent to the reader is returned in the response header.

status

An integer in ASCII text format.

0: no error

1: reader initiated read-string

100: unidentified error

101: command invalid

102: parameter invalid

103: checksum incorrect

104: parameter rejected/altered due to reader state

105: reader unavailable (offline)

Examples
Command Silent Response Extended Response Description

19

DataMan Application Development

||>GET
SYMBOL.DATAMATRIX\r\n

ON ||[0]ON\r\n Is the DataMatrix symbology
enabled?

||>SET
SYMBOL.DATAMATRIX
ON\r\n

no response ||[0]\r\n Enable the DataMatrix symbology.

||>TRIGGER ON\r\n decoded data or
no-read response

||[0]\r\n ||[1]decoded
data or no-read
response in base64\r\n

Trigger Command

DataMan SDK Development
You can use DMCC as an application programming interface for integrating a reader into a larger automation system.

You can also use the DataMan SDK (hereafter referred to as SDK). The following sections give detailed information
about installing the SDK, its contents, building the SDK sample application, and about the utility source codes provided
with the SDK.

Note: If you want to create your own application from scratch and you want to communicate with the DataMan
reader through the serial port, make sure you set port.DtrEnable = true, if the port is an instance of the SerialPort
class.

DataMan SDK Contents
The DataMan SDK comprises the SDK binary files and their documentation, along with code sources of some helper
utilities and a sample application.

The binary files are available for two platforms: one for Microsoft .Net (PC) and one for Microsoft .Net Compact
Framework (CF). The name of each file corresponds to the platform it belongs to (PC/CF). There are two components for
each platform, one is the DataMan SDK core itself (Cognex.DataMan.SDK), the other is for discovering available devices
to be used with the SDK (Cognex.DataMan.Discovery).

The source codes are provided in the form of complete Microsoft Visual Studio projects. In order to build the SDK sample
application, open the sample code’s solution in Microsoft Visual Studio and choose Build solution.

Using the SDK
Usual steps in a typical DataMan SDK application

1. Discover the device (may be omitted if the device address is known in advance).

2. Subscribe to the events you are interested in (e.g. result string arrived event).

3. Connect to the device.

4. Send DMCC commands to the device (e.g. trigger).

5. Process the incoming result data (e.g. show result string).

Accessing the DataMan SDK library
To use the SDK for your own purposes, perform the following steps:

1. In Microsoft Visual Studio, click Create Solution/Project.

2. Under Project, right-click References and choose Add Reference…

3. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.SDK.*.dll file (where * refers to the
platform you are working on, either PC or CF) in the directory where you installed or copied the binary files.

4. You can add the following line to the beginning of your code:

using Cognex.DataMan.SDK;

20

DataMan Application Development

to find the different elements belonging to the SDK in this namespace. They will appear in the intellisense as seen in the
following image:

Enumerating DataMan Devices
In your project, which already uses the SDK, you’ll need the following additional steps:

1. Under Project, right-click References and choose Add Reference…

2. In the pop-up window, click the Browse tab and look for the Cognex.DataMan.Discovery.*.dll file (where * refers
to the platform you are working on, either PC or CF) in the directory where you installed or copied the binary files.

3. Add the following line to the beginning of your code:

using Cognex.DataMan.Discovery;

to find the different elements belonging to the SDK in these namespaces. They will appear in the intellisense.

From this point on, you can choose to discover devices either via Ethernet or via serial communication (RS232/USB), or
you can choose to do both.

4. Discovering devices via Ethernet:

a. Create a new EthSystemDiscoverer.

EthSystemDiscoverer ethSystemDiscoverer = new
EthSystemDiscoverer();

b. Subscribe to its SystemDiscovered event.

ethSystemDiscoverer.SystemDiscovered += new
EthSystemDiscoverer.SystemDiscoveredHandler(OnEthSystemDiscovered);

c. Create event handler of type EthSystemDiscoverer.SystemDiscoveredHandler.

d. The event handler argument is an EthSystemDiscoverer.SystemInfo. These SystemInfo objects contain
information required for connecting to a reader. You can store these SystemInfo objects in your own collection.

e. To start device discovery, call the ethSystemDiscoverer.Discover() method.

5. Discovering devices via serial communication (RS232/USB):

21

DataMan Application Development

a. Create a new SerSystemDiscoverer.

SerSystemDiscoverer serSystemDiscoverer = new
SerSystemDiscoverer();

b. Subscribe to its SystemDiscovered event.

serSystemDiscoverer.SystemDiscovered += new
SerSystemDiscoverer.SystemDiscoveredHandler(OnSerSystemDiscovered);

c. Create event handler of type SerSystemDiscoverer.SystemDiscoveredHandler.

d. The event handler argument is a SerSystemDiscoverer.SystemInfo. These SystemInfo objects contain information
required for connecting to a reader. You can store these SystemInfo objects in your own collection.

e. To start device discovery, call the serSystemDiscoverer.Discover() method.

Note: The SystemDiscovered event will be fired every time a device is detected (either the device announced itself
after booting up or it responded to the Discover() method).

Subscribing to Events
If you want to react to result-like events in your application, you have to subscribe to the related events. There are also
some events related to connection state changes.

Here is an example where you subscribe for the events of read string and image arrival:

mySystem.XmlResultArrived += new XmlResultArrivedHandler(OnXmlResultArrived);
mySystem.ImageArrived += new ImageArrivedHandler(OnImageArrived);

Note: The order of the result components may not always be the same, so if it is important to synchronize them, use
the ResultCollector utility class provided via the DataManUtils component. (See details in section Helper Utilities).

Connecting to a DataMan Device
Your Ethernet device
Connect to your Ethernet device by performing the following steps:

1. Create a connector to your device:

EthSystemConnector myConn = new EthSystemConnector(deviceIP);

where deviceIp is either a known IP address or one that was discovered by an EthSystemDiscoverer.

2. Specify user name and password:

myConn.UserName = "admin";
myConn.Password = "password or empty string";

3. Create a new DataManSystem instance with the created connector:

DataManSystem mySystem = new DataManSystem(myConn);

4. Call the Connect() method of your DataManSystem instance:

mySystem.Connect();

5. (Optional) Verify if you are connected:

if (mySystem.IsConnected)

6. To disconnect, call

22

DataMan Application Development

mySystem.Disconnect();

Note: Currently all devices use the user name admin. If no password is required, an empty string can be used.

Your Serial device
Connect to your serial device by performing the following steps:

1. Create a connector to your device:

SerSystemConnector myConn = new SerSystemConnector(PortName, Baudrate);

where PortName and Baudrate are either known serial connection parameters or come from a SerSystemDiscoverer.

2. Create a new DataManSystem instance with the created connector:

DataManSystem mySystem = new DataManSystem(myConn);

3. Call the Connect() method of your DataManSystem instance:

mySystem.Connect();

4. (Optional) Verify if you are connected:

if (mySystem.IsConnected)

5. To disconnect, call

mySystem.Disconnect();

Sending DMCC Commands to DataMan Devices
Use SendCommand () for sending different commands to the reader. For information about available commands, refer to
the DMCC Command Reference.

There is one mandatory parameter for SendCommand () which is the command string itself. There are also two optional
parameters: one for overriding the default timeout for the command and another for passing additional bytes with the
command.

The following is an example for sending a DMCC command.

DmccResponse response = mySystem.SendCommand("GET DEVICE.TYPE");

Note: The response’s content resides in the response object’s PayLoad property. Also note that no DMCC header
or footer is specified in the command string.

Some functions like SendCommand() or GetLiveImage() also have asynchronous implementations. If you wish to use
these, look for the desired function name with Begin/End prefix. These functions go in pairs; the function with the Begin
prefix returns an IAsyncResult which can be used by the one with the End prefix.

Displaying Static and Live Images from a DataMan Device
To have static images displayed, use DataManSystem.GetLastReadImage () or subscribe for the event ImageArrived to
get images.

To have live images displayed, perform the following steps:

1. Set the reader to live display mode:

mySystem.SendCommand("SET LIVEIMG.MODE 2");

23

DataMan Application Development

2. Periodically poll the device for images by using

mySystem.GetLiveImage(ImageFormat, ImageSize, ImageQuality);

See an example implementation in the source of the Sample application. In the example, a new polling thread is created
to avoid locking the GUI.

To turn off live display mode, use

mySystem.SendCommand("SET LIVEIMG.MODE 0")

Helper Utilities
Some helper functions are provided as source codes with the SDK in the project called DataManUtils. Some of the main
features are described below.

Gui
Provides functions for image manipulation like fitting a result image into a specified control, converting bitmap data
to/from a byte array, and so on.

Additional classes provide SVG helpers for image parsing and SVG rendering. SVG formatted result component is used
by the reader to mark the area of the image where the code was detected.

ResultCollector
The order of result components may not always be the same. For example sometimes the XML result arrives first,
sometimes the image. This issue can be overcome by using the ResultCollector.

The user needs to specify what makes a result complete (e.g. it consists of an image, an SVG graphic and an xml read
result) and subscribe to ResultCollector’s ComplexResultArrived event.

The ResultCollector waits for the result components. If a result is complete, a ComplexResultArrived event is fired. If a
result is not complete but it times out (time out value can be set via the ResultTimeOut property) or the ResultCollector’s
buffer is full (buffer length can be set via the ResultCacheLength property), then a PartialResultDropped event is fired.
Both events provide the available result components in their event argument, which can be used to process the complex
result (e.g. maintain result history, show the image, graphic and result string, and so on.)

DmccEscaper
Can be used to escape or un-escape a DMCC command string.

FileLogger
Simple logger class can be used during development. This, like all other utilities provided here, works both on PC and
CF platforms.

Using the Helper Utilities
The helper utilities are contained in two projects. Both projects refer to the same source codes, but one is created for
Microsoft .Net Compact Framework (DataManUtilsCF) and the other of for the PC’s Microsoft .Net Framework
(DataManUtilsPC). To use the features provided in these utilities, include the proper DataManUtils project in your
solution and reference it in the project in which you wish to use it.

Scripting

Script-Based Data Formatting
The DataMan Setup Tool allows you to have different data formatting combinations, and to have the reader perform
different actions on the output channel, for example, beep, or have the LEDs blink, or pull output 1 up.

24

DataMan Application Development

The script-based formatting has two main advantages:

l flexible result configuration

l configuring reader events before the result returns

Note: Script-based formatting limits the user to performing two custom events and overwriting the system event.

Global JavaScript Functions
The DMCC functions fall to three categories:

l Commands, for example to issue a beep or a re-boot

l Setter functions for properties

l Getter functions for properties

The functions make use of the variable arguments feature of the script engine. The types of the function arguments are
compared to the expected types defined by the DMCC commands. If the number of arguments or an argument type is
incorrect an error status is returned.

The functions return an object with a property for the status. If a command returns a response it can be accessed by the
response property. The status codes are the same as for the DMCC commands.

If a function executes successfully, a zero status value is returned. Script exceptions are not used.

To simplify the integration of DMCC commands in scripting, it is now possible to evaluate a DMCC command line as full
command string. It is not required to split the DMCC command into the type correct command arguments.

Note:
l The data formatting script function is executed after the output delay time or distance elapsed.

l All scripting functions run in a separate thread and the execution is mutual exclusive. It is not possible that a
script function is interrupted by another.

l Use [0,1] or [true,false] instead of [ON|OFF] when scripting.

DMCC Description
dmccGet Based on the DMCC implementation the response is always returned as a single string even for

multi-value responses.
dmccSet It supports multiple and type correct parameters.
dmccCommand N/A
dmccSend The functions evaluates a DMCC command. The return value contains the dmcc response type

containing status and response string. The function requires one string argument.

Example
var foo = dmccGet(”DECODER.ROI”);

The set command supports multiple and type correct parameters, for example:

dmccSet(”DECODER.ROI”, 16, 1280, 16, 1024);

Example
The following example uses the dmccSet functions to issue a beep signal, set the ftp server IP for image storage and
adds the MAC to the output response:

25

DataMan Application Development

function onResult (decodeResults, readerProperties, output)
{

var myoutput;
var result_tmp = dmccCommand(”BEEP”, 1, 1);

result_tmp = dmccSet(”FTP-IMAGE.IP-ADDRESS”, ”192.168.23.42”);
if(result_tmp.status !=0)

{

throw(”FATAL: failed to set the ftp server address”);

}
var mac = dmccGet(”DEVICE.MAC-ADDRESS”);

myoutput = ’Result=”’ + decodeResults[0].content + ’”, MAC=’+mac.response;
output.content = myoutput;
}

In case the DMCC set command for the IP address fails, a non-zero status will be returned, and a script exception will be
thrown that is reported by the DataMan Setup Tool.

Note: If you use the Throw() command, like in the example above, to report the occurrence of an anomalous
situation (exception), the error will appear in the Setup Tool’s error log. To access the error log, in the Setup Tool’s
menu bar, click System and then click Show Device Log.

Example
To get the device name using the dmccGet function the correct string argument is required:

var res = dmccGet(”DEVICE.NAME”);

The dmccSend function can be used in a similar way, but without splitting the command and type correct arguments:

var res = dmccSend(”GET DEVICE.NAME”);

The return value is the same.

DMCC Support
The following DMCC commands are available for Script-Based Formatting:

Command Range Description
GET/SET FORMAT.MODE [0..1] Select formatting mode:

l 0 = basic formatting

l 1 = script-based formatting

SCRIPT.LOAD length Load the formatting script from the host to the reader.
SCRIPT.SEND - Send the formatting script from the reader to the host.

Auxiliary Functions
The following auxiliary global functions are also available:

l function for decoding escape sequences

l function to encode a string argument into base64 encoding

Function decode_sequences
This global function is used to decode escape sequences. The function returns the string that contains the decoded
escape sequence. The return value can be used to add keyboard control commands to a result transmitted over a HID
connection.

26

DataMan Application Development

Parameter Type Description
encodedString string A string value that contains keyboard escape sequences.

To simulate Alt-key, Ctrl-key, or Shift-key combinations, the following four escape sequences are available:

l \ALT- for <ALT-key> sequences

l \CTRL- for <CTRL-key> sequences

l \SHIFT- for <SHIFT-key> sequences

l \K for special keys

Note: The key after the backslash needs to be a capital letter, otherwise no special key combination is recognized.

Supported Key Sequences and Keys
The following list contains the currently supported keys/key combinations:

l ALT-A to ALT-Z

l CTRL-A to CTRL-Z

l CTRL-F1 to CTRL-F12

l SHIFT-F1 to SHIFT-F12

l F1 to F12

l ALT-F1 to ALT-F12

l PageUp, PageDown, Home, End, Arrow (up, down, left, right), , Insert, Delete, Backspace, Tab, Esc, Print Screen,
GUI (left, right) keys.

l The escape sequences for these are the following:

l PageUp -> \KPup;

l PageDown -> \KPdn;

l Home -> \KHome;

l End -> \KEnd;

l Up Arrow -> \KUar;

l Down Arrow -> \KDar;

l Left Arrow -> \KLar;

l Right Arrow -> \KRar;

l Insert -> \KIns;

l Delete -> \KDel;

l Backspace -> \KBksp;

l Tab -> \KTab;

l Esc -> \KEsc;

l Print Screen -> \KPrtScr;

l Left GUI -> \KLGui;

l Right GUI -> \KRGui;

Example
To pre- or post-pend a Ctrl-B keyboard control command, the following code example can be used:

27

DataMan Application Development

var ctrl_b = decode_sequences("\\Ctrl-B;");

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

output.content = ctrl_b+decodeResults[0].content+ctrl_b;

}

}

Note: The backslash for initiating the escape sequence must also be escaped in the input string. The terminating
semicolon is necessary to be able to distinguish between sequences with the same prefix, otherwise key
sequences could be interpreted arbitrarily, e.g. there would be no means to detect if \KF11 means "press F11" or
"Press F1 followed by a one”. If a wrong or incomplete sequence is used, the two characters which mark the escape
sequence are ignored. In this case, the first two letters of the escape sequence are skipped and the remaining
characters will be sent. For example, the sequence "\ALT-M11;" is invalid and will result in displaying "LT-M11;".

Function encode_base64
This global function is used to encode a string argument into base64 encoding. The encoded result is returned as a
string object.

Parameter Type Description
inputString string Input string to encode into base64.

Error Management
Scripting errors may occur when the script is loaded or the code parser function is called. These errors are shown in the
following locations:

l device log

l error box in Script-Based Formatting window

Formatting Script
When script-based formatting is enabled, a user-defined JavaScript module is responsible for data formatting. The
parsing function, which defaults to onResult, is called with three objects as arguments holding the array of DecodeResult
objects, ReaderProperties objects such as trigger mode or statistics, and the output object. There is only one entry point
for both single and multicode results.

Class hierarchy is structured in the following way:

function onResult [decodeResults, readerProperties, output]

DecodeResult
SymbologyProperties
Point

ValidationResult
GS1Validation
DoDValidation

QualityMetrics
Metric

ReaderProperties
Trigger
Statistics

28

DataMan Application Development

Output
Event

See the detailed description of the related objects below.

Function onResult

This is the event handler for decode events, with zero, one or more decoded results.

Property Type Description
decodeResults DecodeResult[] Input, an array of DecodeResult objects. One decode result will hold all

information related to that decode attempt.
readerProperties ReaderProperties Input, the reader properties not tied to the actual decode result.
output Output Output, the object which needs to be updated to modify the output

string or raise events.

Function onGenerateFTPFilename

The name of the file to be sent to the FTP server can be generated with this function.

Property Type Description
decodeResults DecodeResult[] Input, an array of DecodeResult objects. One decode result will hold all

information related to that decode attempt.
readerProperties ReaderProperties Input, the reader properties not tied to the actual decode result.
output Output Output, the object which needs to be updated to modify the output

string or raise events.

The file name of the image to be uploaded is taken from the string return value of the script. For example:

function onGenerateFTPFilename(decodeResults, readerProperties, output)
{

var ftp_filename = readerPRoperties.name + "-";
ftp_filename +=readerProperties.trigger.index + "-" + decodeResults
[0].image.index;
return ftp_filename;

}
function onGenerateFTPPCMReportFilename(decodeResults, readerProperties, output)
{

var ftp_filename = readerPRoperties.name + "-";
ftp_filename +=readerProperties.trigger.index + "-" + decodeResults
[0].image.index;
return ftp_filename;

}

DecodeResult Object

The following tables list the details of the DecodeResult object, its types and properties.

Decode Result

Describes the details of one decoded result.

Property Type Description
decoded boolean True if decoding was successful.
content string The (raw) read result.

29

DataMan Application Development

decodeTime integer The decoding time in milliseconds.
triggerTime integer The trigger time in milliseconds.
timeout string The trigger timeout in milliseconds.
symbology SymbologyProperties The values of this property are listed in the Symbology Properties table

below.
image ImageProperties The values of this property, also known as capture attributes, are listed in

the Image Properties table below.
validation ValidationResult The values of this property are listed in the Validation Result table below.
metrics QualityMetrics The values of this property are listed in the Quality Metrics table below.
readSetup integer Used read setup index token.
source string The name of the device that decoded the image.
annotation string Result annotation for Multi-Reader Sync triggering.
label string Symbol label.
trucheck TruCheckProperties Outputs the TruCheck quality values for verification. The values of this

property are listed in TruCheck Properties table listed below.

Symbology Properties

Symbology properties for a decoded result.

Property Type Description
name string The name of the symbology.
id string The symbology identifier (by ISO15424).
quality integer The overall quality metrics for the code, ranging in [0, 100]. For

symbologies that use Reed-Solomon error correction (e.g. DataMatrix,
QR Code, AztecCode, MaxiCode, DotCode, PDF417, certain 4-state
postal codes), it reports the UEC (unused error correction). For linear
symbologies, it indicates the overall quality of the code. The higher the
number, the better the quality.

moduleSize float The module size. (The unit is pixel per module, ppm.)
size point The size of the symbol in columns x rows. If not applicable for the symbol,

the values will be set to -1.
corners array of Point This specifies the coordinates of the four corners. The details of the Point

property type are listed in the Point table below.
The corner coordinates are returned in the following order:
For non-mirrored symbols,

l corner 0: upper left corner of the symbol,

l corner 1: upper right corner of the symbol,

l corner 2: lower right corner of the symbol,

l corner 3: lower left corner of the symbol,

except for non-mirrored DataMatrix and Vericode, where corner 0 is
where the two solid lines of cells along two sides meet, and corners 1-3
follow counter clockwise.
For mirrored symbols, the corners are mirrored correspondingly.

center Point This specifies the coordinates of the center. The details of the Point
property type are listed in the Point table below.

angle float The code orientation in degrees.

PtpTimeStamp

Peer to peer timestamp value on image acquisition.

30

DataMan Application Development

Property Type Description
s integer Image acquisition timestamp sec property.
ns integer Image acquisition timestamp nanosec property.

Point

Point is the ordered pair of integer x- and y-coordinates that defines a point in a two-dimensional plane.

Property Type Description
x integer This value specifies the x coordinate.
y integer This value specifies the y coordinate.

ImageProperties Object

The following tables list the details of the ImageProperties object, its types and properties.

Image Properties

Properties of a captured image.

Property Type Description
index integer The index of the image within the trigger.
FoV Rect The Field of View, the area of image sensor used relative to the top left sensor

corner. The details of the Rect property type are listed in the Rect table below.
RoI Rect The Region of Interest, the part of the FoV that is actually used, relative to the

sensor. The details of the Rect property type are listed in the Rect table below.
exposureTime integer The exposure time in microseconds.
gain integer The camera gain.
autoExposure boolean True if automatic exposure is used.
illEnabled boolean True if internal illumination is enabled.
illIntensity integer The internal illumination intensity.
extillEnabled boolean True if external illumination is enabled.
extillIntensity integer The external illumination intensity.
targetBrightness integer The target brightness in case of automatic exposure.
focusLength integer The focus value in millimeters. It is 0 if NA.
setupIndex integer The current index of read setup.
inputStates array of boolean The state of the input lines when the trigger was started.
filterTime integer The duration of filtering in milliseconds.
creationTime integer Creation time.
creationTicks integer Encoder ticks corresponding to image creation time.
ptpTimeStamp ptpTimeStamp PtP image acquisition timestamp.
id integer The numerical identifier of this image.

Rect

Rect describes the width, height, and location of a rectangle.

Property Type Description
top integer This specifies the top value relative to the top left sensor corner.
bottom integer This specifies the bottom value relative to the top left sensor corner.
left integer This specifies the left value relative to the top left sensor corner.
right integer This specifies the right value relative to the top left sensor corner.

31

DataMan Application Development

Note: The following TruCheck metrics are only available for devices with TruCheck verifier capability, such as the
DM475 Verifier and the DM8072 Verifier.

TruCheckMetric

A graded verification parameter that has a measurement associated with it.

Property Type Description
grade string The grade of quality in a range from grade A to F, where A is the highest.
raw float The raw metric.
numericGrade float The continuous grade value as shown in ISO 15416:2016.

TruCheckMetricGradeOnly

A graded verification parameter that has a measurement associated with it.

Property Type Description
grade string The grade of quality in a range from grade A to F, where A is the highest.
numericGrade float The continuous grade value as shown in ISO 15416:2016.

TruCheckApplicationStd

Property Type Description
grade string The data title for each section of the parsed data.
data string The raw parsed data.
check string A Pass/Fail assessment determined by the specific application standard selected.

TruCheckCodeword

Property Type Description
codeword integer Outputs the codewords associated with the parsed data.
isCorrected boolean Returns a 0 if the codeword is not corrected using error correction; returns a 1 if the codeword

is corrected using error correction.

TruCheckEncodationAnalysis

Property Type Description
name string Outputs the codeword for the parsed data.
mode string Outputs the encodation mode in effect.
result string Outputs the raw data decoded.

TruCheckMetricGeneral

Property Type Description
contrastUniformity integer The contrast uniformity value is the minimum modulation of any codeword according

to ISO 15415.
horizontalBWG integer Print growth in the horizontal axis.
MRD integer Minimum difference between the brightest bar and the darkest space within the

symbol.
verticalBWG integer Print growth in the vertical axis.
xDimension float The normal cell size spacing in mils (thousandths of an inch).

TruCheckMetricModulation

32

DataMan Application Development

Property Type Description
raw integer Outputs the raw modulation values for each module.
grade string Outputs the letter grade (A-F) for each module.
isBlack boolean Outputs a 0 if the module is white or a 1 if the module is black.

TruCheckMetricOverall

Property Type Description
aperture integer The aperture in mils used to verify the symbol.
applicationStandardName string The application standard used to verify the symbol.
applicationStandardPass string The PASS or FAIL assessment of the symbol according to the application

standard.
gradeLetter string The overall letter grade (A-F).
gradeValue float The overall numeric grade (0.0-4.0).
gradingStandard string The grading standard used to verify the symbol.
lighting string The lighting option selected for verification.
wavelength integer The wavelength used for verification in nm.

TruCheckResult

Outputs the TruCheck values used for verification.

Property Type Description
alignmentPatterns TruCheckMetricGradeOnly The grade values for the alignment pattern of a QR Code

symbol.
applicationStdArray TruCheckApplicationStd An array of parsed data according to the selected

application standard.
applicationStdNotation string The notes associated with the application standard data

parsing.
asciiArray array of integers The ASCII values for the symbol.
averageGrade TruCheckMetric Data Matrix fixed pattern damage metric that averages

multiple segments of its finder pattern.
axialNonUniformity TruCheckMetric The axial nonuniformity (ANU) which is the aspect ratio

grade.
batch string The batch number, if parsed from the symbol data.
bottomLSide TruCheckMetricGradeOnly The grade for the bottom of the L-side of the symbol.
bottomQuietZone TruCheckMetricGradeOnly The grade for the bottom quiet zone.
calibrationDate string The last date of calibration.
cellContrast TruCheckMetric The cell contrast value according to AIM-DPM (ISO

29158).
cellModulation TruCheckMetricGradeOnly The cell modulation value according to AIM-DPM (ISO

29158).
codewordArray The array of codeword values.
decode TruCheckMetricGradeOnly The success or failure of the reference decode algorithm.
distributedDamageGrade TruCheckMetric The distributed damage grade parameter.
encodationAnalysisArray TruCheckMetricGradeOnly The array of encodation analysis values.
fixedPatternDamage TruCheckMetric The fixed pattern damage parameter according to ISO

29158 (AIM-DPM).

33

DataMan Application Development

Property Type Description
formatInformationBlock TruCheckMetricGradeOnly The grade for the format information block of a QR code.
general A structure containing the general characteristic

information.
gridNonUniformity TruCheckMetric The grid nonuniformity (GNU) grade according to ISO

15415.
horizontalClockTrack TruCheckMetricGradeOnly The grade for the horizontal clock track.
jpegImage string The jpeg image of the symbol encoded as a base64

string.
LeftLSide TruCheckMetricGradeOnly The grade for the left L-side of the symbol.
leftQuietZone TruCheckMetricGradeOnly The grade for the left quiet zone of the symbol.
linearDecodability TruCheckMetric The decodability for linear (1D) symbols.
linearDecode TruCheckMetricGradeOnly The decode grade for linear (1D) symbols.
linearDefect TruCheckMetric The defect average value for linear (1D) symbols.
linearEdge TruCheckMetric The edge value for linear (1D) symbols.
linearMinimumEdgeContrast TruCheckMetric The minimum edge contrast (minEC) for linear (1D)

symbols.
linearMinimumReflectance TruCheckMetricGradeOnly The minimum reflectance (minRefl) for linear (1D)

symbols.
linearModulation TruCheckMetric The modulation (MOD) for linear (1D) symbols.
linearQuietZone TruCheckMetric The quiet zone value for linear (1D) symbols.
linearSymbolContrast TruCheckMetric The symbol contrast (SC) value for linear (1D) symbols.
lowerLeftPattern TruCheckMetricGradeOnly The value for the lower left pattern in QR code.
minimumReflectance TruCheckMetric The minimum reflectance (minRefl) value.
Modulation TruCheckMetricGradeOnly The modulation (MOD) value.
modulationArray TruCheckMetricGradeOnly The array of modulation values.
overall All components of formal grade defined by a grading

and/or application standard.
reflectanceMargin TruCheckMetricGradeOnly The grade for the reflectance margin (RM).
rightClockTrack TruCheckMetricGradeOnly The grade for the right clock track (RCT).
rightQuietZone TruCheckMetricGradeOnly The grade for the right quiet zone (RQZ).
rightTransitionRatio TruCheckMetric The grade for the quiet zone value for linear symbols.
symbolContrast TruCheckMetric The grade for symbol contrast (SC) for 2D symbologies.
topClockTrack TruCheckMetricGradeOnly The grade for the top clock track (TCT).
topQuietZone TruCheckMetricGradeOnly The grade for the top quiet zone (TQZ).
topTransitionRatio TruCheckMetric The grade for the top transition ratio (TTR).
UII string The unique item identifier (UII) according to MIL-STD

130.
unusedErrorCorrection TruCheckMetric The grade for the unused error correction (UEC).
upperLeftPattern TruCheckMetricGradeOnly The grade for the upper left pattern (ULP).
upperRightPattern TruCheckMetricGradeOnly The grade for the upper right pattern (URP).
versionInformationBlock TruCheckMetricGradeOnly The version information block (VIB) value for QR Code.
verticalClockTrack TruCheckMetricGradeOnly The grade for the vertical clock track (VCT).

ValidationResult Object

The following tables list the details of the ValidationResult object, its types and properties.

34

DataMan Application Development

Validation Result

Describes all details of the validation.

Property Type Description
state integer These are the validation states:

l notTried

l fail

l pass

The format of this property is “validation.state.notTried”.
method integer These are the validation methods:

l none

l gs1

l iso

l dod_uid

l pattern

l matchString

The format of this property is “validation.method.none”.
matchString string This property returns with the previously configured match string. Match

string validation should be enabled for this.
failurePos integer The position of validation failure.
failureCode integer The validation failure code.
failureMsg string The error message describing the cause of validation failure.
gs1 GS1 Validation The details of the GS1 Validation property type are listed in the GS1

Validation table below.
dod_uid DoD Validation The details of the DoD Validation property type are listed in the DoD

Validation table below.

GS1Validation

GS1 validation details.

Property Type Description
AI00 string Identification of a logistic unit (Serial Shipping Container Code)
AI01
AI01
AI01
AI01

string
string
string
string

Identification of a fixed measure trade item (Global Trade Item Number)
Identification of a variable measure trade item (GTIN)
Identification of a variable measure trade item (GTIN) scanned at POS
Identification of a variable measure trade item (GTIN) not scanned at POS

AI02
AI02

string
string

Identification of fixed measure trade items contained in a logistic unit
Identification of variable measure trade items contained in a logistic unit

AI10 string Batch or lot number
AI11 string Production date
AI12 string Due date for amount on payment slip
AI13 string Packaging date
AI15 string Best before date
AI16 string Sell by date

35

DataMan Application Development

AI17 string Expiration date
AI20 string Product variant
AI21 string Serial number
AI240 string Additional product identification assigned by the manufacturer
AI241 string Customer part number
AI242 string Made-to-Order variation number
AI243 string Packaging component number
AI250 string Secondary serial number
AI251 string Reference to source entity
AI253 string Global Document Type Identifier
AI254 string GLN extension component
AI255 string Global Coupon Number (GCN)
AI30 string Variable count
AI31nn
AI32nn
AI35nn
AI36nn

string Trade measures

AI33nn
AI34nn
AI35nn
AI36nn

string Logistic measures

AI337n string Kilograms per square metre
AI37 string Count of trade items contained in a logistic unit
AI390n string Amount payable or coupon value - Single monetary area
AI391n string Amount payable and ISO currency code
AI392n string Amount payable for a variable measure trade item – Single monetary area
AI393n string Amount payable for a variable measure trade item and ISO currency code
AI394n string Percentage discount of a coupon
AI400 string Customer’s purchase order number
AI401 string Global Identification Number for Consignment (GINC)
AI402 string Global Shipment Identification Number (GSIN)
AI403 string Routing code
AI410 string Ship to - Deliver to Global Location Number
AI411 string Bill to - Invoice to Global Location Number
AI412 string Purchased from Global Location Number
AI413 string Ship for - Deliver for - Forward to Global Location Number
AI414 string Identification of a physical location - Global Location Number
AI415 string Global Location Number of the invoicing party
AI420 string Ship to - Deliver to postal code within a single postal authority
AI421 string Ship to - Deliver to postal code with three-digit ISO country code
AI422 string Country of origin of a trade item
AI423 string Country of initial processing
AI424 string Country of processing
AI425 string Country of disassembly

36

DataMan Application Development

AI426 string Country covering full process chain
AI427 string Country subdivision of origin code for a trade item
AI7001 string NATO Stock Number (NSN)
AI7002 string UN/ECE meat carcasses and cuts classification
AI7003 string Expiration date and time
AI7004 string Active potency
AI7005 string Catch area
AI7006 string First freeze date
AI7007 string Harvest date
AI7008 string Species for fishery purposes
AI7009 string Fishing gear type
AI7010 string Production method
AI703s string Number of processor with three-digit ISO country code
AI710
AI711
AI712
AI713

string National Healthcare Reimbursement Number (NHRN):

AI8001 string Roll products - width, length, core diameter, direction, splices
AI8002 string Cellular mobile telephone identifier
AI8003 string Global Returnable Asset Identifier (GRAI)
AI8004 string Global Individual Asset Identifier (GIAI)
AI8005 string Price per unit of measure
AI8006 string Identification of the components of a trade item
AI8007 string International Bank Account Number (IBAN)
AI8008 string Date and time of production
AI8010 string Component / Part Identifier (CPID)
AI8011 string Component / Part Identifier serial number
AI8012 string Software version
AI8017
AI8018 string Global Service Relation Number (GSRN)

AI8019 string Service Relation Instance Number (SRIN)
AI8020 string Payment slip reference number
AI8110 string Coupon code identification for use in North America
AI8111 string Loyalty points of a coupon
AI8200 string Extended packaging URL
AI90 string Information mutually agreed between trading partners
AI91-99 string Company internal information

DoD Validation

DoD validation details.

Property Type Description
enterpriseID string The enterprise identifier.
serialNum string The serial number.
partNum string The part number.

37

DataMan Application Development

uniqueItemID string The unique item identifier.
batchNum string The batch number.

QualityMetrics Object

The following tables list the details of the QualityMetrics object, its types and properties. The details of the Metric property
type are listed in the Metric table below. All the metrics listed are available for all the standards available under the
Symbology Settings pane in the DataMan Setup Tool.

Quality Metrics

Describes the quality of all measured parameters.

Property Type 1D Standards 2D Standards Description
singleScanInt Metric 1D Readability The single-scan

integrity, raw member
is set to -1. Single-
scan integrity is a
general measure of
the ease of decoding
a barcode using only
a single scan across
it. This is meant to
represent the way that
simple decoders
work. In general, such
algorithms are not
advanced and the
decodability is lower if
a symbol has damage
in multiple locations in
the barcode. A low
singleScanInt metric
may indicate many
different problems, as
it is a general
measure of code
quality.

38

DataMan Application Development

Property Type 1D Standards 2D Standards Description
symbolContrast Metric 1D Readability, ISO/IEC

15416
ISO/IEC 15415
(DataMatrix, QR,
DotCode), SEMI T10

The contrast of the
symbol in ISO15415.
Symbol contrast is a
measure of the
difference in
grayscale value
between the light and
dark cells. A high
contrast makes the
code easier to
decode, while a code
with low contrast may
not decode well due
to difficulty separating
the light and dark
cells from each other.
A poor contrast might
indicate poor lighting,
a code which is
difficult to read due to
similarities between
the print and the
background, or that a
printer is performing
poorly.

cellContrast Metric AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The contrast of the
cell. Cell contrast is a
measure of the
difference in
grayscale value
between the light and
dark parts of the cell.
A high contrast makes
the code easier to
decode, while a code
with low contrast may
not decode well due
to difficulty separating
the light and dark
areas of the cells. A
poor contrast might
indicate poor lighting,
a code which is
difficult to read due to
similarities between
marked and
unmarked areas.

39

DataMan Application Development

Property Type 1D Standards 2D Standards Description
axialNonUniformity Metric ISO/IEC 15415

(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The axial non-
uniformity. Axial non-
uniformity is a
measure of the
difference in spacing
of grid cells along
each axis. In the best
case, this value will
be zero, indicating
that centers of the grid
cells are evenly
spaced in all
directions. A poor
axial non-uniformity
might indicate
problems in the
printing process for
the code, which
causes the code to
appear stretched out
or compressed.

40

DataMan Application Development

Property Type 1D Standards 2D Standards Description
printGrowth Metric 1D Readability ISO/IEC 15415

(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The print growth. Print
growth is a measure
of how completely a
light or dark patch fills
the cell allocated to it.
High print growth
means that a cell
exceeds the
boundaries allocated
to it, while a low print
growth indicates that
the cells are not
taking up all the
available space.
Either of these may
cause problems
(either by making
adjacent cells difficult
to read in the case of
high growth, or
making the cell itself
difficult to read in the
case of low growth).
As a result, a print
growth close to zero is
desirable. A high or
low print growth
usually indicates
problems with the
printing process for a
code. For instance, a
dot peen marker may
be wearing out and
making smaller
marks, or a printer
may be depositing too
much ink on a label
and making the marks
too large.

UEC Metric ISO/IEC 15415
(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR),
SEMI T10

The unused error
correction. Unused
Error Correction
measures the amount
of Error Checking and
Correction data that
was printed into the
code, but was
unused. A high UEC
count is good, as it
means that little to no
Error Correction data
was needed to
successfully read your
code. A low UEC
value may be due to
poor printing, poor
imaging, an incorrect
code, or a damaged
code.

41

DataMan Application Development

Property Type 1D Standards 2D Standards Description
modulation Metric ISO/IEC 15416 ISO/IEC 15415

(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The modulation.
Modulation measures
how easily separable
light cells are from
dark cells in a code.
Somewhat similar to
contrast, higher
modulation is better,
and low modulation
can lead to difficulty
telling light cells from
dark ones. Low
modulation can
indicate poor lighting,
a code which is
difficult to read due to
similarities between
the print and the
background, or that a
printer is performing
poorly.

fixedPatternDamage Metric ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR)

The fixed pattern
damage. Fixed
pattern damage is a
measure of how much
of the fixed patterns
around the outside of
the code (the solid
finder patterns and
the alternating
clocking patterns) are
intact. If the fixed
patterns are
damaged, then the
code may be difficult
to find at all, let alone
decode. A poor fixed
pattern damage score
usually indicates a
code which has been
damaged or
smudged, or it
indicates a quiet zone
violation.

42

DataMan Application Development

Property Type 1D Standards 2D Standards Description
gridNonUniformity Metric ISO/IEC 15415

(DataMatrix, QR,
DotCode), AIM/DPM
ISO/IEC TR-29158
(DataMatrix, QR)

The grid non-
uniformity. Grid non-
uniformity measures
the difference
between the optimal
placement of cells
based on the overall
grid and their actual
placements. This is
similar to the axial
non-uniformity
measurement, but
instead of measuring
a stretching or
compressing of the
whole grid, this
measures how much
the individual cells
deviate from their
expected positions.
Poor grid non-
uniformity usually
indicates a printing
process which is not
consistent in its
placement of the cells.

extremeReflectance Metric ISO/IEC 15415
(DataMatrix, QR)

The extreme
reflectance. This
metric measures the
brightness of the
background on which
the code is printed. A
too high value might
indicate lighting or
imaging trouble that
could lead to a code
being washed out and
difficult to read. A low
value may indicate
that not enough light
is being applied to the
code, and that
contrast may be poor,
leading to difficulty in
reading. A poor
extreme reflectance
grade may also
indicate trouble
relating to the
positioning of lights
such as hotspots.

43

DataMan Application Development

Property Type 1D Standards 2D Standards Description
reflectMin Metric 1D Readability, ISO/IEC

15416
The reflectance
minimum. This metric
measures how dark
the dark part of a
barcode is. A low
value indicates that
the dark parts of the
code are dark, and a
high value indicates
that they are not. A too
low value may
indicate that there is
not enough light or
too short exposure
time is being used. A
too high value might
indicate a hotspot, too
much light, or that a
too high exposure
time is being used.
Print quality troubles,
like a printer
depositing less ink
than intended, may
also be indicated by
the minimum
reflectance grade.

edgeContrastMin Metric 1D Readability, ISO/IEC
15416

The edge contrast
minimum measures
the ratio of minimum
edge contrast to the
maximum contrast in
the symbol. The
metric is designed to
pick up any artifacts in
the symbol, such as a
damaged bar, which
generate low contrast
variations in the
symbol. A poor grade
here might indicate
poor focus in the
optical system, poor
lighting, or poor
printing.

44

DataMan Application Development

Property Type 1D Standards 2D Standards Description
multiScanInt Metric 1D Readability The multi-scan

integrity. Multi-scan
integrity is a general
measure of the ease
of decoding a symbol
by using multiple
scans across the
barcode. This metric
is a way of measuring
how advanced
decoders might
perform in decoding a
particular barcode. A
low multiScanInt
metric may indicate
many different
problems, as it is a
general measure of
code quality.

signalToNoiseRatio Metric SEMI T10 (DataMatrix) Signal To Noise Ratio
(SNR) is a relative
measure of the
Symbol Contrast to
the maximum
deviation in light or
dark grayscale levels
in the symbol (ie.
noise).

horizontalMarkGrowth Metric SEMI T10 (DataMatrix) Horizontal Mark
Growth is the tracking
of the tendency to
over or under mark
the symbol, that is, a
horizontal size
comparison between
the actual marked
cells vs. their nominal
size.

verticalMarkGrowth Metric SEMI T10 (DataMatrix) Vertical Mark Growth
is the tracking of the
tendency to over or
under mark the
symbol, that is, a
vertical size
comparison between
the actual marked
cells vs. their nominal
size.

dataMatrixCellWidth Metric SEMI T10 (DataMatrix) Data Matrix Cell Width
is the average width
of each cell in the
matrix (in pixels).

dataMatrixCellHeight Metric SEMI T10 (DataMatrix) Data Matrix Cell
Height is the average
height of each cell in
the matrix (in pixels).

45

DataMan Application Development

Property Type 1D Standards 2D Standards Description
horizontalMarkMisplacement Metric SEMI T10 (DataMatrix) Horizontal Mark

Misplacement is the
average horizontal
misplacement of Data
Matrix marks from
their optimal Data
Matrix Cell Center
Points.

verticalMarkMisplacement Metric SEMI T10 (DataMatrix) Vertical Mark
Misplacement is the
average vertical
misplacement of Data
Matrix marks from
their optimal Data
Matrix Cell Center
Points.

cellDefects Metric SEMI T10 (DataMatrix) Cell Defects is the
ratio of incorrect
pixels to total pixels in
the grid.

finderPatternDefects Metric SEMI T10 (DataMatrix) Finder Pattern Defects
is the ratio of incorrect
pixels to total pixels in
the finder pattern.

overallGrade Metric ISO/IEC 15416 ISO/IEC 15415
(DataMatrix, QR),
AIM/DPM ISO/IEC TR-
29158 (DataMatrix, QR),
SEMI T10

Overall grade
calculated from the
individual metrics.

edgeDetermination Metric ISO/IEC 15416 Edge Determination is
the number of edges
detected in the Scan
Reflectance Profile. If
the number of
detected edges is
greater than or equal
to the expected
number of edges, the
grade is 4. Otherwise,
the grade is 0.

defects Metric ISO/IEC 15416 Defects are
irregularities in
elements (bars and
spaces) and quiet
zones. The parameter
is used to measure
the ‘noise’ that results
from unwanted dips
and spikes in the
Scan Reflectance
Profile. The smaller
the defect, the better
the grade.

46

DataMan Application Development

Property Type 1D Standards 2D Standards Description
referenceDecode Metric ISO/IEC 15416 Reference Decode is

an indication of
whether the standard
2D Data Matrix
algorithm was able to
locate and decode
this particular mark.
This metric generates
a grade of either A or
F.

decodability Metric ISO/IEC 15416 Decodability is the
measure of bar code
printing accuracy in
relation to the
symbology-specific
reference decode
algorithm.
Decodability indicates
the scale of error in
the width of the most
deviant element in the
symbol. The smaller
the deviation, the
higher the grade.

contrastUniformity Metric ISO/IEC 15416 ISO/IEC 15415
(DataMatrix, QR)

Contrast Uniformity is
an optional parameter
that is used for
measuring localized
contrast variations. It
does not affect the
overall grade.

reflectanceMargin Metric ISO/IEC 15416 ISO/IEC 15415
(DataMatrix, QR)

Reflectance Margin
measures how each
module is
distinguishable as
light or dark
compared to the
global threshold.
Factors (like print
growth, certain optical
characteristics of the
substrate, uneven
printing, encodation
errors) can reduce or
eliminate the margin
for error between the
reflectance of a
module and the
global threshold. A
low Reflectance
Margin can increase
the probability of a
module being
incorrectly identified
as dark or light.

Metric

Describes the quality of a measured parameter.

47

DataMan Application Development

Property Type Description
raw float The raw metric.
grade string The grade of quality in a range from grade A to F, where A is the highest.

Reader Properties

The following tables list the details of the reader properties.

ReaderProperties

Reader properties not tied to the actual decode result.

Property Type Description
name string The name of the device that decoded the image.
trigger Trigger The details of Trigger property type are listed in the Trigger table below.
stats Statistics The details of the Statistics property type are listed in the Statistics table below.
inputstr string This property serves the same function as the <Input String> data formatting token in

Standard Formatting: it holds the string that was sent to the reader via the InputString feature
(only configurable through DMCC).

Trigger

Describes the details of the initiating trigger event.

Property Type Description
type integer These are the available trigger types:

l single

l presentation

l manual

l burst

l self

l continuous

The format of this property is “trigger.type.single”.
index integer The unique trigger identifier.
burstLength integer The number of images in case of burst trigger.
interval integer The trigger interval in microseconds.
delayType integer These are the available trigger delay types:

l none

l time

l distance

The format of this property is “trigger.delayType.none”.
startDelay integer The trigger start delay in milliseconds (when using Trigger.delayTime.time) or

millimeters (when using Trigger.delayTime.distance).
endDelay integer The trigger end delay in milliseconds (when using Trigger.delayTime.time) or

millimeters (when using Trigger.delayTime.distance).
creationTime integer Creation time.
creationTicks integer Encoder ticks corresponding to trigger signal time.

48

DataMan Application Development

groupIndex integer The unique trigger identifier property of the reader which triggered the group.
endTime integer Trigger event end time (in ms).
endTicks integer Encoder tick counter at trigger end event time.

Statistics

Operational information about the reader.

Property Type Description
reads integer The total number of decoded symbols.
noReads integer The number of times the trigger was received but no symbol was decoded.
triggers integer The total number of triggers calculated by

totalReads+totalNoReads+missedTriggers.
bufferOverflows integer The number of images that were not buffered because of image buffer full

condition.
triggerOverruns integer The number of missed triggers because acquisition system was busy.
itemCount integer The number of no reads when buffered no read images are allowed.
passedValidations integer The number of reads that passed the data validation.
failedValidations integer The number of reads that failed the data validation.

Output
Output describes the result and events after a decode. It is possible to specify different results for individual protocol
targets. The output object has target-specific properties of type string. The name of the output property is the same as the
target protocol name. If no target-specific output is assigned, the result falls back to the default result taken from the
output.content property.

Property Type Description
content string The string that is sent as decode result.
events event These are the output events that are activated. The details of the

DecodeEvents property type are listed in the DecodeEvents table
below.

SetupTool* string The string that is sent to the Setup Tool as decode result.
Serial* string The string that is sent to serial and USB connections as decode result.
Telnet* string The string that is sent to the Telnet connection as decode result.
Keyboard* string The string that is sent to the HID connection as decode result. Not

available for 5.2.
FTP* string The string that is sent to the FTP connection as decode result.
PS2* string The string that is sent to the PS2 connection as decode result. Not

available for 5.2.
NetworkClient* string The string that is sent to the NetworkClient connection as decode

result.
IndustrialProtocols* string The string that is sent to the connected PLC as decode result.

*These properties suppress the output information that was previously set via the output.content property.

An example for the protocol-specific formatting feature can be found here:

49

DataMan Application Development

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

var mymsg = decodeResults[0].content;
// output[’Serial’] is identical to output.Serial
output[’Serial’] = ”serial: ”+mymsg;
output.Telnet = ”telnet: ”+mymsg;

output.content = mymsg;

}
else
{
output.content = ”bad read”;
}

}

Note: For every channel that is not addressed in special, the output is the normal content text. For example:

function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

/* save decoded result to variable */
var mymsg = decodeResults[0].content;

/* output to telnet channel a different result
*/
output.Telnet = "telnet: " + mymsg;

/* to all other channel output the saved
result */
output.content = mymsg;

}
else
{

/* On bad read output to all channels the same
*/
output.content = "bad read";

}

}

DecodeEvents

Describes the events to be emitted after a decode.

Property Type Description
system integer These are the system generated events:

l 0 = none

l 1 = good read

l 2 = no read

l 3 = validation failure*

50

DataMan Application Development

user1 boolean True if user event 1 is raised.
user2 boolean True if user event 2 is raised.

* Only changing between good read and validation failure is supported.

Code Completion and Snippets
The script editor features automatic code completion, which shows pop-up messages with information regarding the
code that is being written. Pop-up messages usually appear when typing special characters, for example period,
opening or closing brackets, and so on. These messages can also be used manually with the Ctrl+Space key
combination.

Code completion works in the following scenarios:

l complete a code fragment (Ctrl-Space)

l provide function list (Ctrl-Shift-Space)

The toolbar at the top of the editor collects the following actions available within the editor:

l Cut (Ctrl-x)

l Copy (Ctrl-c)

51

DataMan Application Development

l Paste (Ctrl-v)

l Complete Word (Ctrl-k and then press w)

l Insert Snippet (Ctrl-k and then press x)

Snippets
The editor provides a selection of preset code fragments as examples. You can insert these snippets by right-clicking in
the editor, using the toolbar or using the Ctrl-k and x key combination.

52

DataMan Application Development

Custom Communication Protocol API
Custom communication scripting can be activated by a boolean VT entry that can be accessed in the DataMan Setup
Tool.

The methods are encapsulated in a communication object. Each communication channel creates an instance of the
communication object.

When the Custom Protocol Communication API is enabled through a private DMCC command, the scripting context adds
the following capabilities and requirements:

l The constructor function of the communication object, CommHandler, contains a list of functions that the script
must contain:

n onConnect

n onDisconnect

n onExpectedData

n onTimer

n onUnexpectedData

n onError

n onEncoder

The user must implement these functions, as the custom communications function will call them.

l There are five member functions that the reader script engine offers, implemented by the reader:

n send

n close

n setTimer

n expectFramed

n setEncoder

By using these functions, a user could write javascript code that allows the reader to interact with another system. In
particular, the user can write code to send messages back to the other system, something that is not supported in basic
scripting.

Advantage
The script engine uses the same context for function execution and object creation. This allows the sharing of data
between the script-based formatting and the custom communication scripts using global accessible objects.

List of functions
The communication member functions define the following method prototypes to be implemented by the user:

CommHandler – The constructor function for the communication object. The constructor must return a new
communication handler object implementing the user methods in the communication script. The reader methods are
added to the communication handler object directly after construction. The implementation of the constructor is
mandatory and an error will be thrown if it does not exist. Since software version 5.5 the constructor function call offers
the following argument:

o localName: The local name of the connection. The local name of a network connection is ”<READER_
IP>:<PORT>”. An example for a Telnet connection is “10.82.80.156:23” with the default telnet port of 23. An
example for a Network Client connection is “10.82.80.156:57350”. The local name for the serial connection is

53

DataMan Application Development

“COM1” or “COM USB”.

o onConnect – Initialize state upon connection (a network connection established or protocol stack starts on serial
connection). If the method is not implemented an error occurs. The method has one argument and a return value:

l peerName – The peer name of the connection. The peer name for a network connection is ”<PEER_
IP>:<PORT>”. An example peer name for a Telnet connection is “10.82.80.71:19772”, for a “Network
Client” connection it is “10.82.80.71:1000”, where the host port is configured to 1000. The peer name for
the serial connection is “COM1” or “COM USB”.

l return – The boolean return value defines if the handler for this connection should be activated:

n true: Enables customization of the communication protocol. Therefore, if you want to use your own
protocol for communicating with the Dataman device, return true.

n false: If you do not need the customized protocol for this peer, return false.

o onDisconnect – Cleanup method called when closing the connection channel

o onExpectedData – Method called if data matching the set properties has arrived. The method has one argument:

l inputString – The received frame matched data excluding header and termination

l return – Determines if the data should be removed from input buffer

n true: clear the buffer.

n false: keep the value in buffer.

o onTimer – The timer value expired

o onUnexpectedData – The recieved data is not matching the requirements. The boolean return value determines
if the data should be removed from input. The method has one argument:

l inputString – The received data

l return – Determines if the data should be removed from input buffer

n true: clear the buffer.

n false: keep the value in buffer.

o onError – An error occurred in the firmware and can be reported. The implementation of the method is
mandatory. The method has one argument and no return value:

l errorMsg – The error message for trigger overruns (“Trigger Overrun”), buffer overruns (“Buffer Overflow”)
and general errors reported by the firmware.

o onEncoder – Executed if a configured encoder distance is reached. The distance can be configured by the
setEncoder method. The method has no arguments or return value.

o send – Send data to channel, returns the number of send characters. The method must be called with one
argument:

l Data argument is a string

o close – Actively terminates connection for the communication object (for example, close TCP/IP socket). On
UART, this causes onConnect to be called right afterwards.

o setTimer – Set the one-shot timer value when the onTimer will be executed. The timer can be re-initialized and
aborted.

l Timeout in seconds of type double, internal resolution is us (1e-6 sec). A zero value aborts a running
timer. Active timer will be overwritten.

54

DataMan Application Development

o expectFramed – Tells the communication listener which data to pass on to the onExpectedData and
onUnexpectedData methods. It is possible to change the match parameter at runtime. The following three
arguments are required:

n header of type string, can be empty (””)

n terminator of type string, can be empty (””)

n max length of type integer, specifies the maximum length of an input message to check for a match
[required]

o setEncoder – Units of the distance argument are millimetres. The encoder is configured in Setup Tool under
System Settings -> Pulse Encoder. If encoder ticks should be used instead of distance set the value of the
parameter “Resolution (mm)” to 1.

n distance (double) – The encoder distance in which the onEncoder method will be called.

The methods must be implemented in the public section of the object.

Examples

API usage of custom communication protocol object

This example below demonstrates the API usage of the custom communication protocol object. The example implements
custom commands read from the connection. The commands are framed by a ”#” header and terminated by ”;\r” (for
example, a serial PuTTY connection). A timer periodically sends timer messages. Use the custom stop command to stop
them. You can change the timer handler once by the switch command.

55

DataMan Application Development

function CommHandler()
{

// private properties and methods:

var num_trigger = 0;
var num_send;

// public properties and methods:
function onTimeout()
{

num_send = this.send(my_name + ': timer callback\r\n');
this.setTimer(1.0);

}

function onTimeout2()
{

today = new Date();
var msg = today.getSeconds() * 1000 + today.getMilliseconds();

num_send = this.send(my_name + ': time is: ' + msg + '\r\n');

dmccCommand("TRIGGER", true);
this.setTimer(1.0);

}

function replace_crlf(input_str)
{

return input_str.replace(/\r/g, '\\r').replace(/\n/g, '\\n');
}

return {

onConnect: function (peerName)
{

my_name = peerName;
// we may ignore the connection
if(my_name == "COM1")

return false;

num_send = this.send(my_name + ": connected\r\n");

this.expectFramed("#", ";\r\n", 64);
return true;

},

onDisconnect: function ()
{
},

onExpectedData: function (inputString) {

var msg = 'ok';
this.expectFramed("#", ";\r\n", 64);
if (inputString == "name")
{

msg = dmccGet("DEVICE.NAME");
msg = msg.response;

}

else if(inputString == "trigger")

56

DataMan Application Development

{

this.send(my_name + ': issue a trigger...\r\n');
dmccCommand("TRIGGER", true);

msg = 'done';

}
else if (inputString == "close")
{

this.close();

}
else if (inputString == "stop")
{

this.setTimer(0.0);

}
else if (inputString == "start")
{

this.setTimer(10.0);

}
else if (inputString == "switch")
{

this.onTimer = onTimeout2;

}
else if (inputString == "time")
{

today = new Date();
msg = today.getSeconds() * 1000 + today.getMilliseconds();

}
else
{

msg = "unknown command: " + replace_crlf(inputString);

}

num_send = this.send(my_name + ': ' + msg + "\r\n");
return inputString.length;

},

onUnexpectedData: function (inputString) {

this.expectFramed("#", ";\r\n", 128);
msg = replace_crlf(inputString);

num_send = this.send(my_name + ': ' + msg + "?\r\n");

return true;

},
onTimer: onTimeout
};
}

Generic use case: Heartbeat
Send out a periodic heartbeat message if reader is idle.

57

DataMan Application Development

// Data Formatting:

var comm_handler = new Array(0);

// Converts read data to all upper case. Single code only.
function onResult (decodeResults, readerProperties, output) {

if (decodeResults[0].decoded) {

output.content = decodeResults[0].content+'\r\n';
for (var i = 0; i < comm_handler.length; i++)
{

comm_handler[i].resetHeartBeat();

}

}

}

// Communication:

// Heart beat example without disturbing the DMCC communication function CommHandler() {

var beat_timer = 10.0; // beat timer in sec
var peer_name;

return {

onConnect: function (peerName)

{

peer_name = peerName;
this.resetHeartBeat(); // initial timer
this.expectFramed("\0", "\0", 128); // some pattern
unlikely to happen
comm_handler.push(this); // register the handler for
results
// enable the handler for this connection:
return true;

},
onDisconnect: function ()
{

var index = comm_handler.indexOf(this)
comm_handler.splice(index, 1);

},
onError: function (errorMsg)
{

},
onExpectedData: function (inputString) {
return false;
},

onUnexpectedData: function (inputString) {
return false;
},

58

DataMan Application Development

onTimer: function () {

today = new Date();

var msg = today.getSeconds() * 1000 + today.getMilliseconds();
num_send = this.send(peer_name + ': time is: ' + msg + '\r\n');
this.resetHeartBeat(); // schedule next timer event [sec]
},

resetHeartBeat: function () {
this.setTimer(beat_timer); // schedule next timer event [sec]
}

};

}

Generic use case: Real time timestamp
Implements a custom DMCC command to set the real time (send current time in seconds starting Jan 1 1970, as output
by date +”%s” command). Prepend output with real time timestamp.

// communication script
var time_offset=0;

function CommHandler()
{

var peer_name;

return {

onConnect: function (peerName)
{

peer_name = peerName;
this.expectFramed("||;1>SET TIME.NOW ", "\r\n", 128); //
some pattern unlikely to happen
// enable the handler for this connection:
return true;

},
onDisconnect: function ()
{

},
onError: function (errorMsg)
{

},
onExpectedData: function (inputString) {

realTime = parseInt(inputString)*1000;
localTime = (new Date()).getTime();
time_offset = realTime - localTime;
this.send("||[0]\r\n");
return true;

},

59

DataMan Application Development

onUnexpectedData: function (inputString) {

return false;

},
onTimer: function () {
}
};

}

// data formatting script
function onResult (decodeResults, readerProperties, output)
{

var d = new Date();
var real = new Date(time_offset+d.getTime());

output.content = real.toString() + " " + decodeResults[0].content + "\r\n";

}

Customer Protocols implemented in various CR releases
Communication with cmf400 Profibus gateway

var CMF400_PROTOCOL_STATUS =
{

RUNNING: {value: 0, name: "Running"},
SYNCRONIZING: {value: 1, name: "Sync"},
CONFIGURING: {value: 2, name: "Config"},
STOPPED: {value: 3, name: "Stop"}

};
// make the enum non-modifyable
Object.freeze(CMF400_PROTOCOL_STATUS);

var cmf400_protocol_stx = '\x02'; // header
var cmf400_protocol_etx = '\x03'; // termination

// VT Parameter to be converted into script configuration constant values:
// "/Communication/Interfaces/COM1/Protocol")
var vt_param_comif_com1_protocol = 1;
// "/Communication/Protocols/CMF400/Profibus node number"), 3);
var vt_param_profibus_node_number = 1;
// "/Communication/Protocols/CMF400/Profibus mode"), 3);*/
var vt_param_profibus_mode = 1;

// TODO: how to configure parameter, where to store them with a out of stock firmware?
var cmf400_protocol_profibus_node_number = 1;

var cmf400_protocol_profibus_mode = 1;

var cmf400_protocol_test_diagnostic_enabled = 0;

var cmf400_protocol_test_diagnostic = 'TEST';

// Protocol strings
var cmf400_gateway_init = '+Gateway-Init+';
var cmf400_gateway_ident_ok = '+GW SOK TSICDPS';
var cmf400_gateway_ident_no = '+GW SNO TSICDPS';
var cmf400_gateway_run = '+GW-RUN+';
var cmf400_gateway_error = '+GW-ERR';

60

DataMan Application Development

// Formatting helper function
function zero_prefix(num, size)
{

var s = "000000000" + num;
return s.substr(s.length - size);

}

function CommHandler()
{

// The current protocol state
var cmf400_status = CMF400_PROTOCOL_STATUS.STOPPED;

function _configTimedOut()
{

if (cmf400_status == CMF400_PROTOCOL_STATUS_CONFIGURING)
{

cmf400_status = CMF400_PROTOCOL_STATUS_STOPPED;
this.setTimer(30.0);
onTimer = _onSync;

}

}

function _onSync()
{

if (cmf400_status == CMF400_PROTOCOL_STATUS.SYNCRONIZING)

{

this.send(cmf400_protocol_stx + cmf400_gateway_init +
cmf400_protocol_etx);
this.setTimer(1.0);
onTimer = _onSync;

}

}
function _onTimer()
{

if (cmf400_status == CMF400_PROTOCOL_STATUS.STOPPED)
{

cmf400_status = CMF400_PROTOCOL_STATUS.SYNCRONIZING;
return;

}

}

return {

onConnect: function (peerName)
{
expectFramed("", cmf400_protocol_etx, 510); //
is 510 an arbitrary limit?
cmf400_status = CMF400_PROTOCOL_
STATUS.SYNCRONIZING;
this.onTimer = _onSync;
this.setTimer(0.0001);
return true;

61

DataMan Application Development

},
onDisconnect: function ()
{

},
onExpectedData: function (inputData)
{

data = inputData.slice(1,inputData.length-1);
if (cmf400_status == CMF400_PROTOCOL_STATUS.SYNCRONIZING)
{

if (data == cmf400_gateway_ident_ok || data ==
cmf400_gateway_ident_no)
{

cmf400_status = CMF400_PROTOCOL_
STATUS.CONFIGURING;
var msg = cmf400_protocol_stx;

msg += "+GW S000 H000";
msg += " X" + zero_prefix(vt_param_
comif_com1_protocol, 3);
msg += " N" + zero_prefix(vt_param_
profibus_node_number, 3);
msg += " M" + zero_prefix(vt_param_
profibus_mode, 3);
msg += cmf400_protocol_etx;
this.send(msg);
this.onTimer = _configTimedOut;
this.setTimer(10.0);

}

}
if (data == cmf400_gateway_error)
{

cmf400_status = CMF400_PROTOCOL_
STATUS.STOPPED;
this.setTimer(30.0);
this.onTimer = _onTimer;

}
else if (data == cmf400_gateway_run) // missing check for
status, e.g. CMF400_PROTOCOL_STATUS.CONFIGURING?
{

cmf400_status = CMF400_PROTOCOL_STATUS.RUN;
this.setTimer(0);
this.onTimer = _onTimer;

}
return true;

},
onUnexpectedData: function (inputData)
{

// ignore all unexpected data
return true;

},
onTimer: _onSync

};

}

62

DataMan Application Development

function onResult (decodeResults, readerProperties, output)
{

//assuming single code
var content = cmf400_protocol_stx+decodeResults[0].content+cmf400_protocol_etx;
output.content = content;

}

Pass weight string input along with decode string

// the constructor:

var input_string = "";

function CommHandler()
{

// private properties and methods:

var num_trigger = 0;
var my_name;
var num_send = 99;

function privFunc ()
{
}

// public properties and methods:

return {

onConnect: function (peerName)
{

my_name = peerName;
num_send = this.send(my_name + ": connected\r\n");
num_send = this.expectFramed("\x02", "\x03", 128);
return true;

},
onDisconnect: function ()
{

},
onExpectedData: function (inputString) {
input_string = inputString;
return true;
},

onUnexpectedData: function (inputString) {
return true;
}

};

}

63

DataMan Application Development

//Empty data formatting entry point function
function onResult (decodeResults, readerProperties, output)
{

if (decodeResults[0].decoded)
{

output.content = input_string + decodeResults[0].content + "\r\n"
input_string = "";

}

}

FMPCS protocol

// This must be in the global scope, otherwise, it is undefined
var bConnected = false;

dmccSet('TRIGGER.TYPE', 0);
dmccSet('SYMBOL.4STATE-IMB', 1);
dmccSet('SYMBOL.DATAMATRIX', 1);
dmccSet('SYMBOL.I2O5', 1);
dmccSet('SYMBOL.PDF417', 1);
dmccSet('SYMBOL.POSTNET', 1);

function CommHandler()
{

var tray = "0000";
var speed = 0;

var package_id_expr = new RegExp("I([0-9]{9})");
var package_idtray_expr = new RegExp('^I([0-9]{9}),T([0-9]{4})');
var config_msg_expr = new RegExp('^CS([0-9]{3}),M([ab]),L([0-9]{4})$');

var ErrorToId = {

'Buffer Overflow': 101,
'Trigger Overrun': 102
};

return {

onConnect: function (peerName)
{

if(peerName == "COM1" || bConnected)
return false;
this.expectFramed("", "\r", 128);
this.send(dmccGet('DEVICE.FIRMWARE-VER').response +
',"Cognex ' + dmccGet('DEVICE.TYPE').response + '"\r\n');
this.send('Ha,"DataMan READY"\r\n');
bConnected = true;
return true; // activate this connection

},
onError: function (msg) // TODO: this is new!
{

64

DataMan Application Development

var errno = ErrorToId[msg];
if (!errno)
errno = 100;
this.send('E' + errno + ',"' + msg + '"\r\n');
},
// We delay sending the result until trigger off to be sure that the
package id is received.
setResult: function (decodeResults) {
storedDecodeResults = decodeResults;
},
onDisconnect: function ()
{

bConnected = false;
},

onExpectedData: function (input)
{

var input = input.replace(/\n/g, '');
switch(input.charAt(0).toUpperCase())

case 'B':

dmccCommand("TRIGGER", true);
break;

case 'E':

dmccCommand("TRIGGER", false);
break;

case 'I':

var match = package_idtray_
expr.exec(input);
if(!match)

match = package_id_
expr.exec(input);

packageID = match[1];
if(match[2])

tray = match[2];

else

tray = "0000";

break;

65

DataMan Application Development

case 'C':

var match = config_msg_expr.exec(input);
if (match.length == 4)
{

speed = parseInt(match[1], 10);
mode = match[2];
lengthLimit = parseInt(match[3],
10);

}
break;

case 'P':

this.send('Q\r\n');
break;

case 'Q':

// pong response, not used
break;

}
return true;

},
onUnexpectedData: function (input) {
return true;
}

};
}

The data formatting formats the result based on global variables set by the communication handler:

var packageID = "000000000"; // reset the package id
var mode = 'a';
var lengthLimit = 9999;

function getFixedPsocId(id_)
{

var id = id_;
switch (id.charAt(1))
{

case 'd':

id = "[D0";
break;

case 'X':

switch (id.charAt(2))
{

66

DataMan Application Development

case '0':
case '1':
id = "[P0";
break;
case '2':
case '3':
id = "[L0";
break;
case '5':
case '6':
case '7':
case '8':
case '9':
case 'A':
id = "[O0";
break;

}
break;

}
return id;

}
function onResult (decodeResults, readerProperties, output)
{

var my_decode_results = new Array();

for(var i = 0; i < decodeResults.length; i++)
{

if(!decodeResults[i].decoded)
continue;
switch (decodeResults[i].symbology.name)
{

case 'Interleaved 2 of 5':

// b=throw away 6 digit I2of5 ending in 9
if ((mode == 'b' && decodeResults
[i].content.length == 6 && decodeResults
[i].content.charAt(5) == '9'))

continue;

case 'Data Matrix':

if (decodeResults[i].content.length >
lengthLimit)

continue;

case 'PDF417':

if (decodeResults[i].content.length >
lengthLimit)

continue;

default:

my_decode_results.push(decodeResults[i]);

}

}

67

DataMan Application Development

var msg = 'D' + packageID + ',S,W,V';
if (my_decode_results.length == 0)
{

msg += ',?';
output.content = "no result";

}
else
{

for(var i = 0; i < my_decode_results.length; i++)
{

msg += ',' + getFixedPsocId(decodeResults
[i].symbology.id);

switch (my_decode_results[i].symbology.name)
{

case 'Data Matrix':
case 'PDF417':
msg += encode_base64(my_decode_results
[i].content);
break;
case 'POSTNET':
case 'PLANET':
case 'XYZ OneCode':
case 'Interleaved 2 of 5':
default:

msg += my_decode_results
[i].content;

}

}

}
packageID = "000000000"; // reset the package id
output.Telnet = output.Serial = msg + '\r\n';

}

Input match string, output from script (30x)

function CommHandler()
{

return {

onConnect: function (peerName)
{

this.expectFramed('\x02', '\x03', 256);
return true;

},
onDisconnect: function ()
{
},
onExpectedData: function (inputString) {

68

DataMan Application Development

if (inputString.length >= 11)
{

var new_match_string = inputString.substr(11,
inputString.length);
for (var i = 1; i <= 3; i++) {

dmccSet("DVALID.PROG-TARG", i);
dmccSet("DVALID.MATCH-STRING", new_match_
string);

}
// The following DMCC command resets all statistic values
// the CR reset only a view of them
dmccCommand("STATISTICS.RESET");

}
this.send("DEBUG: "+inputString + "\r\n");
return true;

},
onUnexpectedData: function (inputString) {

return true;

},
onTimer: function (inputString) {
}

};
}

Data formatting delegates output to communication handler objects

var comm_handler = new Array(0);

// Converts read data to all upper case. Single code only.
function onResult (decodeResults, readerProperties, output)
{

output.content = '';
output.SetupTool = decodeResults[0].content;
if (decodeResults[0].decoded) {

for (var i = 0; i < comm_handler.length; i++)
{
comm_handler[i].sendResultTelegram(decodeResults);

}

}

}

69

DataMan Application Development

// Parameter:
var system_id = '\x43'; // the system ID
var heartbeat_time_s = 5.0; // heartbeat timer in sec [0-50] (0 is disabled)
var append_crlf = true; // wether to

function CommHandler()
{

function getChecksum(data)
{

var sum = 0;
for(var i = 0; i < data.length; i++)
sum += data.charCodeAt(i);
return 0x7F - (sum % 0x7f);

}

var TelegramState = {

WAIT4CONTENT: {value: 0, name: "Wait For Content"},
CHECKSUM: {value: 1, name: "Header Received"}

};

var errorCodes = {

undef_index: 0x31,
multi_index: 0x32,
index_in_use: 0x33,
telegram_error: 0x34,
trigger_overrun: 0x40,
buffer_overflow: 0x41,

};

var filler = '#';
var separator = ',';

var telegram_types = {

heartbeat: {type: 'F', content: system_id+'\xf7'},
init_resp: {type: 'J', content: system_id},
};

// initialization: J
// index: S

var telegram;
var status;
var index;
var all_index = new Array();

return {

sendResultTelegram: function (decodeResults)
{

var data = system_id;
var length = 0;

70

DataMan Application Development

if (!index)
{

this.sendErrorTelegram(errorCodes.undef_index);

index = '9999';

}

data += index;
for (var i = 0; i < decodeResults.length; i++) {

length = decodeResults[i].content.length;
data += String.fromCharCode(length / 256, length % 256);

}

data += separator + filler;
length = 0;
for (var i = 0; i < decodeResults.length; i++) {

length += decodeResults[i].content.length;
data += decodeResults[i].content;

}
if (length & 0x1)

data += filler;

data += String.fromCharCode(getChecksum(data));
this.sendTelegram({type: system_id, content: data});

index = null; // invalidate the used index

},
sendErrorTelegram: function (errcode)
{

var errtel = {type: 'F', content: system_id+String.fromCharCode
(errcode)}

this.sendTelegram(errtel);

},
sendTelegram: function (telegram)
{

var data = telegram.type + telegram.content;
data = '\x02'+data+String.fromCharCode(getChecksum(data))+'\03';
this.send(data);
if (append_crlf)

this.send('\r\n');

},
checkTelegram: function(data, checksum)
{

var exp_checksum = getChecksum(data);
if (checksum != exp_checksum) {

this.sendErrorTelegram(errorCodes.telegram_error);

} else {

switch (data[0])
{

case 'I':

71

DataMan Application Development

this.sendTelegram(telegram_types.init_resp);

this.setTimer(0.0); // disable the
heartbeat timer
all_index = new Array(0);
break;
case 'S':
if (index) {

this.sendErrorTelegram(errorCodes.multi_index);

break;

}
index = data.substr(1, 4);
if (all_index.indexOf(index) >= 0)

this.sendErrorTelegram(errorCodes.index_in_use);

else

all_index.push(index);

break;

default:

break;

}

}

},

onConnect: function (peerName)
{

status = TelegramState.WAIT4CONTENT;
this.expectFramed('\x02', '\x03', 203);
this.setTimer(heartbeat_time_s);
index = null;
comm_handler.push(this);
all_index = new Array();
return true;

},
onDisconnect: function ()
{

var index = comm_handler.indexOf(this)
comm_handler.splice(index,1);

},

onExpectedData: function (inputString) {

switch (status)
{

case TelegramState.WAIT4CONTENT:

this.expectFramed('', '', 1); // actually, disable framing
telegram = inputString;
status = TelegramState.CHECKSUM;
break;

case TelegramState.CHECKSUM:

this.expectFramed('\x02', '\x03', 203); // enable framing
for the next telegram
this.checkTelegram(telegram, inputString.charCodeAt(0));
status = TelegramState.WAIT4CONTENT;
break;

72

DataMan Application Development

default:

throw("unknown state");

}
return true;

},
onUnexpectedData: function (inputString) {
this.expectFramed('\x02', '\x03', 203); // enable framing for the
next telegram
status = TelegramState.WAIT4CONTENT;
return true;

},
onTimer: function (inputString) {
this.sendTelegram(telegram_types.heartbeat);
this.setTimer(heartbeat_time_s);
}

};
}

Event Callback
The callback mechanism allows to register handler for trigger and input events. Handler for these events can be
registered by the registerHandler method:

callback_handle registerHandler(eventid, callback, ...)

The registerHandler function requires the following arguments:

o eventid – identifier for the event type to register for

o callback – function object to execute on event

Available events identifier are defined in a constant object named “Callback”. Optional arguments can be used to
configure the event, e.g. to filter the sensitivity.

A handle is returned that must be used to de-register the callback. To de-register the handler use the deregisterHandler
function:

deregisterHandler(callback_handle)

o callback_handle – handle returned by the registerHandler method.

It is possible to register the callback handler within the global scope, e.g. to be used in data formatting.

Event Types
Current available events that can be registered are “onInput” and “onTrigger” events.

onInput event: It calls the callback function on input signal and button changes. The optional third argument allows to set
filter for certain inputs. The object “ConstInput” defines masks for inputs:

o Input0:

o Input1:

o Input2:

o Input3:

o Input4:

o Input5:

73

DataMan Application Development

o Input6:

o InputAll

o BnTrig

o BnTune

The input mask can be combined. The input values are sampled with an accuracy of 1 ms. The callback function for the
onInput event has one argument for the new state of the input.

onTrigger event: It executes the callback function on trigger start and trigger end events. The callback function for the
onTrigger event has two arguments: The first argument is the trigger object, the second argument the boolean state of
the trigger, true for a trigger start and false for a trigger end.

Examples
The example defines three event handler:

l onInput0 – reacting on input0 signal and the switch button

l onInput1 – reacting on input1 signal

l onTrigger – reacting on trigger events

function CommHandler()
{

return {

onConnect: function (peerName)
{

this.peer = peerName;
this.input1 = registerHandler(Callback.onInput,
this.onInput0.bind(this),
ConstInput.Input0|ConstInput.BnTrig);
this.input2 = registerHandler(Callback.onInput,
this.onInput1.bind(this), ConstInput.Input1);
this.ontrigger = registerHandler(Callback.onTrigger,
this.onTrigger.bind(this));
return true;

},

onDisconnect: function ()
{

deregisterHandler(this.input1);
deregisterHandler(this.input2);
deregisterHandler(this.ontrigger);

},

onTrigger: function (trigger, state) {

if (state)

this.send("call onTrigger: started trigger with index " +
trigger.index + "\r\n");

else

this.send("call onTrigger: end trigger with index " +
trigger.index + "\r\n");

74

DataMan Application Development

},
onInput0: function (inputs) {

this.send("call onInput0 for '" + this.peer + ", inputs=" + inputs +
"\r\n");

},

onInput1: function (inputs) {

this.send("call onInput1 for '" + this.peer + ", inputs=" + inputs +
"\r\n");

}

};
}

With the following event sequence: input1 on, input0 on, input0 off, input1 off, software trigger, switch on, switch off, we
get the following output on the terminal:

call onInput1 for 'COM1, inputs=2
call onTrigger: start trigger with index 9
call onInput0 for 'COM1, inputs=1
call onTrigger: end trigger with index 9
call onInput0 for 'COM1, inputs=0
NO-READ
call onInput1 for 'COM1, inputs=0
call onTrigger: start trigger with index 10
NO-READ
call onTrigger: end trigger with index 10
call onInput0 for 'COM1, inputs=4096
call onTrigger: start trigger with index 11
call onInput0 for 'COM1, inputs=0
call onTrigger: end trigger with index 11
NO-READ

The following example registers a handler on Input1 events and stores the state in a global variable. The state of the
input is output by the data formatting.

var ginputs = false;

registerHandler(Callback.onInput, onInput, ConstInput.Input1);

// Default script for data formatting
function onResult (decodeResults, readerProperties, output)
{

output.content = "Input: "+ginputs+" \r\n";

}

function onInput(inputs)
{

ginputs = (inputs & ConstInput.Input1) ? true : false;

}

75

DataMan Application Development

Copyright © 2020
Cognex Corporation. All Rights Reserved.

	Legal Notices
	Table of Contents
	Symbols
	About This Manual
	Networking
	Connecting Your DataMan to the Network
	Connecting Your Fixed-Mount DataMan Reader to the Network
	Connecting Your Handheld DataMan Reader to the Network
	Connecting Your DataMan Intelligent Base Station to the Network
	Direct Connection to Your Computer

	Connecting Your Reader Across Subnets
	Troubleshooting a Network Connection

	DataMan Application Development
	DMCC Overview
	Command Syntax
	DataMan SDK Development

	Scripting
	Script-Based Data Formatting
	Error Management
	Output
	Code Completion and Snippets
	Custom Communication Protocol API

